Role for both DNA and RNA in GTP hydrolysis by the Neisseria gonorrhoeae signal recognition particle receptor.
نویسندگان
چکیده
The prokaryotic signal recognition particle (SRP) targeting system is a complex of two proteins, FtsY and Ffh, and a 4.5S RNA that targets a subset of proteins to the cytoplasmic membrane cotranslationally. We previously showed that Neisseria gonorrhoeae PilA is the gonococcal FtsY homolog. In this work, we isolated the other two components of the gonococcal SRP, Ffh and 4.5S RNA, and characterized the interactions among the three SRP components by using gel retardation and nitrocellulose filter-binding assays and enzymatic analyses of the two proteins. In the current model of prokaryotic SRP function, based on studies of the Escherichia coli and mammalian systems, Ffh binds to 4.5S RNA and the Ffh-4.5S RNA complex binds to the signal sequence of nascent peptides and then docks with FtsY at the membrane. GTP is hydrolyzed by both proteins synergistically, and the nascent peptide is transferred to the translocon. We present evidence that the in vitro properties of the gonococcal SRP differ from those of previously described systems. GTP hydrolysis by PilA, but not that by Ffh, was stimulated by 4.5S RNA, suggesting a direct interaction between PilA and 4.5S RNA that has not been reported in other systems. This interaction was confirmed by gel retardation analyses in which PilA and Ffh, both alone and together, bound to 4.5S RNA. An additional novel finding was that P(pilE) DNA, previously shown by us to bind PilA in vitro, also stimulates PilA GTP hydrolysis. On the basis of these data, we hypothesize that DNA may play a role in targeting proteins via the SRP.
منابع مشابه
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.
The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it...
متن کاملGTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor
Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP-dependent reaction during protein translocation is the SRP receptor-mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the ...
متن کاملThe structural basis of FtsY recruitment and GTPase activation by SRP RNA.
The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated sta...
متن کاملThe crystal structure of the signal recognition particle in complex with its receptor.
Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstro...
متن کاملRole of SRP RNA in the GTPase cycles of Ffh and FtsY.
The bacterial homologues of the signal recognition particle (SRP) and its receptor, the Ffh*4.5S RNA ribonucleoprotein complex and the FtsY protein, respectively, form a unique complex in which both Ffh and FtsY act as GTPase activating proteins for one another, resulting in the mutual stimulation of GTP hydrolysis by both proteins. Previous work showed that 4.5S RNA enhances the GTPase activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 3 شماره
صفحات -
تاریخ انتشار 2003